#
Appendix
#
4.-1 Appendix
#
Derivation of 2-mass-1-spring simple harmonic oscillator.
The equations of motion of the two masses are
\begin{equation}
m_{1}\ddot{x}_{1}=k(x_{2}-x_{1}-x_{0})
\end{equation}
\begin{equation}
m_{2}\ddot{x}_{2}=-k(x_{2}-x_{1}-x_{0})
\end{equation}Let x_{c} be the center of mass. By principle of moments,
\begin{equation}
m_{1}(x_{c}-x_{1})=m_{2}(x_{2}-x_{c})
\end{equation}Let x_{d} be the distance between the two masses
\begin{equation}
x_{d}=x_{2}-x_{1}
\end{equation}This gives
\begin{align}
m_{1}x_{c}-m_{1}x_{1} & =m_{2}(x_{d}+x_{1})-m_{2}x_{c}\nonumber \\
x_{1}(m_{1}+m_{2}) & =(m_{1}+m_{2})x_{c}-m_{2}x_{d}\nonumber \\
x_{1} & =x_{c}-\frac{m_{2}}{m_{1}+m_{2}}x_{d}
\end{align}Similarly,
\begin{equation}
x_{2}=x_{c}+\frac{m_{1}}{m_{1}+m_{2}}x_{d}
\end{equation}We sought to re-write the equations of motion in terms of x_{c}\text{ and }x_{d}.
Putting Eq.(
\begin{align*}
m_{1}\left(\ddot{x}_{c}-\frac{m_{2}}{m_{1}+m_{2}}\ddot{x}_{d}\right) & =k(x_{d}-x_{0})\\
m_{2}\left(\ddot{x}_{c}+\frac{m_{1}}{m_{1}+m_{2}}\ddot{x}_{d}\right) & =-k(x_{d}-x_{0})\\
(m_{1}+m_{2})\ddot{x}_{c} & =0\\
\ddot{x}_{c} & =0
\end{align*}That is a bit of work to show that the center of mass do not acceletate
in the vibrational motion! Okay.. but what about the distance of separation?
Putting Eq.(
\begin{align*}
\ddot{x}_{d} & =\ddot{x}_{2}-\ddot{x}_{1}\\
& =-\frac{k}{m_{2}}(x_{d}-x_{0})-\frac{k}{m_{1}}(x_{d}-x_{0})\\
& =-\frac{m_{1}+m_{2}}{m_{1}m_{2}}k(x_{d}-x_{0})\\
& =-\frac{k}{\mu}(x_{d}-x_{0})
\end{align*}where {\displaystyle \mu=\frac{m_{1}m_{2}}{m_{1}+m_{2}}} is the effective mass of the system. The above can be made even simpler by letting x=x_{d}-x_{0} to obtain
\ddot{x}=-\frac{k}{\mu}xTo obtain the potential energy of the system, we use the force-potential relationship:
\begin{align*}
F & =-\frac{dV}{dx}\\
\frac{dV}{dx} & =-\mu\ddot{x}=kx\\
V & =\frac{1}{2}kx^{2}
\end{align*}(We can set the constant of integration to zero without loss of generality.)
#
A note on quantum operators
In the previous chapter, we saw that Schrödinger was inspired by the energy conservation equation
\frac{p^{2}}{2m}+V(x)=Eand arrived at the Schrödinger equation
\left(-\frac{\hbar^{2}}{2m}\frac{\partial^{2}}{\partial x^{2}}+V(x)\right)\psi(x)=E\psi(x)In 3 dimensions,
\frac{\mathbf{p}^{2}}{2m}+V(x)=Ewhere \mathbf{p}=(p_{x},p_{y},p_{z}), leads to
\left(-\frac{\hbar^{2}}{2m}\nabla^{2}+V(\mathbf{r})\right)\psi(\mathbf{r})=E\psi(\mathbf{r})where \mathbf{r}=(x,y,z) and
\nabla^{2}=\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right)In spherical coordinates,
\nabla^{2}=\frac{1}{R^{2}}\frac{\partial}{\partial R}\left(R^{2}\frac{\partial}{\partial R}\right)+\frac{1}{R^{2}\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial}{\partial\theta}\right)+\frac{1}{R^{2}\sin^{2}\theta}\frac{\partial^{2}}{\partial\phi^{2}}It turns out to obtain the Schrödinger equation from classical concepts, one can make the following conversions:
\begin{align*}
x & \rightarrow x\\
p & \rightarrow-i\hbar\frac{\partial}{\partial x}\\
p^{2} & \rightarrow-\hbar^{2}\frac{\partial^{2}}{\partial x^{2}}\\
\mathbf{r} & \rightarrow\mathbf{r}\\
\mathbf{p}^{2} & \rightarrow-\hbar^{2}\nabla^{2}
\end{align*}The right-hand-side of the above conversions are known as the "operators" in the language of quantum mechanics. For angular momentum L the operator conversions are
\begin{align*}
L_{x} & \rightarrow-i\hbar\left(y\frac{\partial}{\partial z}-z\frac{\partial}{\partial y}\right)=i\hbar\left(\sin\phi\frac{\partial}{\partial\theta}+\cot\theta\cos\phi\frac{\partial}{\partial\phi}\right)\\
L_{y} & \rightarrow-i\hbar\left(z\frac{\partial}{\partial x}-x\frac{\partial}{\partial z}\right)=i\hbar\left(-\cos\phi\frac{\partial}{\partial\theta}+\cot\theta\sin\phi\frac{\partial}{\partial\phi}\right)\\
L_{z} & \rightarrow-i\hbar\left(x\frac{\partial}{\partial y}-y\frac{\partial}{\partial x}\right)=-i\hbar\frac{\partial}{\partial\phi}\\
\mathbf{L}^{2} & \rightarrow-\hbar^{2}\left[\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial}{\partial\theta}\right)+\frac{1}{\sin^{2}\theta}\frac{\partial^{2}}{\partial\theta^{2}}\right]
\end{align*}For the rigid rotor,
T+V=\frac{\mathbf{L}^{2}}{2I}=Egives the SE
-\frac{\hbar^{2}}{2I}\left[\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial}{\partial\theta}\right)+\frac{1}{\sin^{2}\theta}\frac{\partial^{2}}{\partial\theta^{2}}\right]\psi=E\psi


