#
Appendix
By
#
1.-1 Appendix
Kepler's second law is in fact conservation of angular momentum L.
Kepler's second law gives
\frac{dA}{dt}=\frac{1}{2}r^{2}\frac{d\theta}{dt}=\text{constant}
Angular momentum L is defined by
\mathbf{L}=\mathbf{r}\times\mathbf{p}=m\mathbf{r}\times\mathbf{v}
The magnitude of angular momentum is
|\mathbf{L}|=L=mrv\sin\alpha
where \alpha is the angle between \mathbf{r} and \mathbf{v}.
From the diagram above, we see that
\begin{align*} v\sin\alpha\,dt & =rd\theta\\ v\sin\alpha & =r\frac{d\theta}{dt} \end{align*}
Putting this into the expression for the magnitude of angular momentum, we have
L=mr^{2}\frac{d\theta}{dt}
Since Kepler's second law says that
\frac{dA}{dt}=\frac{1}{2}r^{2}\frac{d\theta}{dt}=\text{constant},
this implies that
L=2m\frac{dA}{dt}=\text{constant}.